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1. Introduction. In [1] Edmonds has given a proof of a theorem (Theorem 3.1

below) characterizing those directed graphs that contain k mutually edge-
disjoint branchings (spanning arborescences) having specified root sets. His
proof is based on a complicated algorithm for constructing such branchings when 3
they exist. While it is not known whether this algorithm is good (runs in
polynomial time), Tarjan has described a conceptually simple and good algorithm
for finding k mutually edge-disjoint branchings, when they exist [4#]. Tarjan's |
algorithm is based on a lemma (Lemma 2 of [4]; slightly generalized below as
Theorem 3.2) and network flow routines. Tarjan's proof of this lemma invokes
Edmonds' theorem and algorithm; indeed, as Tarjan notes, his lemma is implicit
in Edmonds' results. This poses the problem, pointed out by Tarjan in [4], of i
finding a simple direct proof of his lemma, one that avoids invoking Edmonds'
theorem and its complicated algorithmic proof. The purpose of this note is to

give such a proof, thereby providing a simpler proof of Edmonds' theorem and a

————

simpler proof that Tarjan's algorithm works.

2. Definitions and notation. A directed graph G = [V,E] consists of a finite

set of vertices V and a finite set of edges E such that each edge e ¢ E
has a head h(e) e V and a tail t(e) € V. Ve sometimes denote an edge e by
u the ordered pair (t(e),h(e)), even though there may be multiple edges in G

having the same tail and head. A subgraph G' = [V',E'] of G is a directed

graph having vertex-set V' CV and edge-set E' CE such that for all ec€c E',

we have t(e) ¢ V' and h(e) € V'. A directed path in G from ue V to

v eV is a sequence u = t(el), ey h(el) = t(e2), e2,...,h(en_l) = t(en), e s
h(en) = v, composed alternately of vertices and edges of G. A vertex u is

itself a directed path from u to u having no edges.




For any non-empty subset R cof vertices of G, a branching B of G,
rooted at R, is a subgraph of G such that for every vertex v of G, there
is precisely one directed path in B from a vertex in R to v.

For any X CV, let

>
"
<
]
>
-’
.

GE(X) (e e E: t(e) e X and h(e) € X

>
"
<
]
>
[

sé(x) {e e E: h(e) ¢ X and t(e) ¢ X

For XCV, YCV, we use the notation
(X,Y) = {e ¢ E: t(e) ¢ X, h(e) € Y}.

Thus 6;()() z (X,X), cé(x) = (X,X). If X is a non-empty proper subset of V,
the set GE(X) = 6&(?) = (X,X) is acut in G, it separates any vertex x ¢ X
from any vertex y € X; i.e., any directed path in G from x€¢ X to ye€ X
contains at least one edge of GE(X).

If S is a set, we let |S| denote the cardinality of S. As above, we
use the symbol "C" for set inclusion; henceforth we use "C" for proper

inclusion.

3. Main theorems. Let G = [V,E] be a directed graph with designated non-
empty root-sets R].’R2" "’P‘k’ and suppose that G contains k mutually
edge-disjoint branchings 81,82,...,Bk, where Bi is rooted at Ri’
i=1,2,...,k. Then it is clear that for every proper subset X of V, we

must have

l6gtx)] > [{i: 1 <i <k and R, SX}].

i



Theorem 3.1 (Edmonds). For any directed graph G = [V,E] and any sets

R;» ##R, CV, 1<1i<k, there exist mutually edge-disjoint branchings

& B., 1 <1i <k, rooted respectively at Ri’ if and only if, for every proper

subset X gg v, we have

(3.1) |cé(x)| >tiz 1 <1<k and R, ©X}.

.
]
(A

Theorem 3.2. Suppose given a directed graph G = [V,E] and a class of

non-empty subsets Rl,.R2,...,Rk of V such that (3.1) holds for all X # V.

1 G [Vl,Bl] be a subgraph of G such that Ry EV

Let B and on the subgraph

1

G' = [V,E-El] we have

(3.2) 6] > [{i: 2 < i<k ana R CX}, all X#V.
Then if V) # V, there is an edge e* ¢ 63(V,) and for all X # V,
(3.3) et € 63,(X) = |60 (0} > [{i: 2 < i <k and R, € X} + 1.

In applying Theorem 3.2 and Tarjan's algorithm to prove Theorem 3.1, the

subgraph Bl of Theorem 3.2 would be taken to be a branching rooted at Rl

of some subgraph of G. In this instance, Theorem 3.2 reduces to Lemma 2 of [u].

& 4. Proof of Theorem 3.2. We begin the proof of Theorem 3.2 with some pre-
liminary lemmas. It is convenient first to extend G by adding a 'source"

vertex s and vertices rl,rz,...,r corresponding to the root-sets

k
Rl,R2,...,Rk. We also add the edges (s,ri), together with the sets of edges
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(ri,Ri), i=1,2,...,k, thereby obtaining an enlarged directed graph H = [N,A]

containing G as a subgraph. Note that all edges joining N-V and V in H

are directed into Vv, i.e. (V,§-v) = ¢, Corresponding to the subgraph

B, = [Vl,El] of G there is an "s-rooted subgraph" B, of H having vertex-

1

set V‘1 u {s,rl} ard edge-set Al = El U (s,rl) u (rl,Rl); hence, corresponding

to the subgraph G' = [v, E-El] of G there is the subgraph H!' [N, A-Al]

of H.

Lemma 4.1. Condition (3.1) implies that there are at least k mutually

edge-disjoint diprected paths ﬂ H from s to v, for all v e V.

Proof. By the max-flow min-cut theorem and the integrity theorem for
network flows [2], it suffices to show that if (5,N-S) is a cut in H
separating s from v, then I(S,N-S)I = lG;(S)I > k. Let (S,N-S) be

acut in H with s e S, v g N-§ = S. Let R = {rl,r2,...,rk}. We may

partition (S,S) as follows:

(4.1) (5.5) = (s, R "S) L(R N S, VNS Uvns,vns).

Suppose Ri € S. Then either r. ¢ S, in which case (s,ri) e (s,RNS),
or r, € S and there is a vertex u e Ri NS, in which case

(ri,u) e (RNOHS,VN3). Thus

(v.2)  [(s,RNS) UR NS,V NS)| > |{iz 1 <i <k and R, @s}.

Since ve VNS, wehave VNS c V, and hence condition (3.1) implies

(4.3) v as,vn8)| > |{i: 1< <k and R, cs}.




e

It follows from (4.1), (4.2), and (4.3) that |(S,§)| > k, as was to be shown.
A similar proof establishes

Lemma 4.2. Condition (3.2) implies that there are at least k-1 mutually

edge-disjoint directed paths in H' from s to v, for all ve V.

We next state two lemmas that are valid for any directed graph with
"source” s. (Later on they will be applied to the directed graph H'.) While
these lemmas can be found in a recent paper by Lovasz [3], they are consequences
of well-known results in network flow theory. In particular, the second of
the two (Lemma 4.4 below) is stated explicitly in [2, Chap. I]J. We describe
these lemmas as in [3], using the following definition. 1In a directed graph
H = [N,A] with "source" s ¢ N, let m(s,x) denote the maximum number of
mutually edge-disjoint directed paths from s to x, for x e N-{s}. Say

that a set X € N-{s} is regular with core x if x ¢ X and m(s,x) = 6;’()().

(In other words, X is the "sink" set of a minimum cut (X,X) separating

seX from xe X in H.)

Lemma 4.3. If X and Y are regular sets with cores x and y, respec-

tively, and if xe Y, then X NY, X UY are regular with cores x, y,

respectively.

Lemma 4.4. For each vertex x # s, there is a regular set Tx with

core x such that whenever X is a regular set with core x, then Tx cX.

We continue with the proof of Theorem 3.2. Suppose that (3.1) and (3.2)
hold, but that (3.3) does not hold. Let e]., j € J, be an enumeration of
the edges of G comprising the set sg(vl). Thus for each ej € GE(Vl) there

+
is aset S. # V such that e, € 6.,(5,) and
3 3 G' "]




+ q 0
IGG,(Sj)l < |{i: 2 <i <k and R, E.Sj}l + 1.

Combined with (3.2), this yields

(4.4) lag,(sj)l = [{i: 2<i<k and RiSSj}I j

for all j e J.
We want to work with the enlarged directed graphs H and H', rather

than G and G'. Hence we define

(4.5) T. =S. U{s} U{r.: R, €5S,}.
j 3 i 1=

It follows that |

+ q
(4.6) IGH,(TJ.)| = k-1, jed.

To see this, note first that if Ri ¢ Sj’ then r, ¢ Tj’ and hence

(s,ri) € 6;,(Tj), whereas no edge e of H' with tail t(e) = r, belongs
to 6;,(Tj). On the other hand, if Ri S.Sj, then no edge incident to r.

(T.). Thus
]

belongs to 6;,

+ + 0 3
|6H,(Tj)| = |5G,(sj)| + [{i: 2 <i <k and RiESj}I.
By (4.4), we have

+ . .
|6”,(Tj)| = |{i: 2

A

i<k and R, €S,| + |{i: 2<i<k and R, £5S.}|
- i="3 -7 - 1=

n
x
t
|




verifying (4.6).
Since s € T, and h(e,) € T. = N-T,, the set 6+,(T.) is a cut in
] ] J 3 H'" )
H' of size k-1 separating s and h(ej), for all j € J. Lemma 4.2
thus implies that _T-J. is regular with core h(e].). Using Lemma 4.4, we may
assume that -'lTj is minimal with core h(ej). (Note that with this assumption,

we still have ej € GH,(T].).)

Lemma 4.5. Let the sets T.j be minimal regular sets in H' with cores

h(ej), j € J. Suppose that j,& € J with h(e,) € Tj' Then Tlsfj' 1f
Tz CT]., then h(ej) ¢ Tl'

Lemma 4.5 follows from Lemma 4.3, since if Tz and Tj are regular with
cores h(el) and h(ej), respectively, and if h(ez) € Tj’ then T—R, n?}.
is regular with core h(el). Since Tz is minimal with respect to this

property, we have Tg _C_fz n -T-j, and hence Tz

proper and if h(ej) € -'ITE, then fg would be regular with core h(e

S?j. If this inclusion is

), contra-

i

dicting the minimality of fj' Thus if T, C:I‘-j, then h(ej) ¢ Tg.

We apply Lemma 4.5 repeatedly to prove the next lemma.

Lemma 4.6. Let the sets T]. be minimal regular sets in H' with cores

h(e.) e T,,, them T. = T.
J i — ] ]

To prove this lemma, select any jo € J. Define J, = {j e J: h(ej) € 'T_'j }.
0
If for all j e JO, we have Tj = Tj , then take j* = jo. Otherwise, there
0
is a jl € JO such that T. # Tj » in which case Lemma 4.5 asserts that
1 0
€T, , h(e, ) ¢ T, . Define Jy = {jed:hle)e T. }. If forall jelJ
1 Jdo o 31 ] 1
T. =T. , then take j* = j . Otherwise, there is a j, ¢ J, such
]l 1 2 1
that T, # T. , in which case Lemma 4.5 asserts that T, €T, , h(e., ) ¢ T. .
2 1 2 N 1 32
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Define J, = {j e J: h(e.) e T. }, and so on. Since T, DT, >T, >...,
2 i i; LR PR P
we must eventually find a j* satisfying the conclusion of the lemma.
We show next that T&* (IVl = @. To this end we examine the set of edges

(Tj* ri Vi Tj*-vl) in H'. Suppose first that (T].* n Vs Tj*_vl) #@. In

this case there is an edge e with t(e) ¢ Fj* 0l Vl’ h(e) € Tj

e 1is one of the edges ej, j € J. Since h(ej) € Tj*) Lemma 4.6 implies

5= Vl , and hence

. = T,.. But we hav t(e, R, t(e, eT-.,., contradictin T.=T....-
s @ Ty e tle) ¢ Ty, tle) e Ty, g Ty =T

Thus (Tj* n Vi Tj*-vl) = ¢#. But then sz._,- V, is regular with core h(ejz._,)
and hence, since Tj* is minimal with respect to this property, we must have

Tow = Typ-V

. which implies T., A V. = g.
e . J% 1 4

l’

Thus we have established the existence of j* e J and Tj* such that

u.7 B _9 = - _.q = .
(4.7) IGH,(T].“)I k-1 and T, NV, =g

It follows from (4.7) that
(4.8) |6
Thus (Tj’.__.,;f].g.:) is a cut in H separating 3 from h(ej*) € V having only

k-1 members, contradicting Lemma 4.1. Hence our assumption that (3.3) does

not hold is untenable. This completes the proof of Theorem 3.2.
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